Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3361, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637524

RESUMO

Xenotransplantation represents a possible solution to the organ shortage crisis and is an imminent clinical reality with long-term xenograft survival in pig-to-nonhuman primate (NHP) heart and kidney large animal models, and short-term success in recent human decedent and clinical studies. However, concerns remain about safe clinical translation of these results, given the inconsistency in published survival as well as key differences between preclinical procurement and immunosuppression and clinical standards-of-care. Notably, no studies of solid organ pig-to-NHP transplantation have achieved xenograft survival longer than one month without CD40/CD154 costimulatory blockade, which is not currently an FDA-approved immunosuppression strategy. We now present consistent survival in consecutive cases of pig-to-NHP kidney xenotransplantation, including long-term survival after >3 hours of xenograft cold preservation time as well as long-term survival using FDA-approved immunosuppression. These data provide critical supporting evidence for the safety and feasibility of clinical kidney xenotransplantation. Moreover, long-term survival without CD40/CD154 costimulatory blockade may provide important insights for immunosuppression regimens to be considered for first-in-human clinical trials.


Assuntos
Sobrevivência de Enxerto , Rim , Animais , Humanos , Suínos , Transplante Heterólogo/métodos , Xenoenxertos , Terapia de Imunossupressão/métodos , Ligante de CD40 , Antígenos CD40 , Rejeição de Enxerto
2.
Lancet ; 402(10399): 397-410, 2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37393920

RESUMO

BACKGROUND: A genetically engineered pig cardiac xenotransplantation was done on Jan 7, 2022, in a non-ambulatory male patient, aged 57 years, with end-stage heart failure, and on veno-arterial extracorporeal membrane oxygenation support, who was ineligible for an allograft. This report details our current understanding of factors important to the xenotransplantation outcome. METHODS: Physiological and biochemical parameters critical for the care of all heart transplant recipients were collected in extensive clinical monitoring in an intensive care unit. To ascertain the cause of xenograft dysfunction, we did extensive immunological and histopathological studies, including electron microscopy and quantification of porcine cytomegalovirus or porcine roseolovirus (PCMV/PRV) in the xenograft, recipient cells, and tissue by DNA PCR and RNA transcription. We performed intravenous immunoglobulin (IVIG) binding to donor cells and single-cell RNA sequencing of peripheral blood mononuclear cells. FINDINGS: After successful xenotransplantation, the graft functioned well on echocardiography and sustained cardiovascular and other organ systems functions until postoperative day 47 when diastolic heart failure occurred. At postoperative day 50, the endomyocardial biopsy revealed damaged capillaries with interstitial oedema, red cell extravasation, rare thrombotic microangiopathy, and complement deposition. Increased anti-pig xenoantibodies, mainly IgG, were detected after IVIG administration for hypogammaglobulinaemia and during the first plasma exchange. Endomyocardial biopsy on postoperative day 56 showed fibrotic changes consistent with progressive myocardial stiffness. Microbial cell-free DNA testing indicated increasing titres of PCMV/PRV cell-free DNA. Post-mortem single-cell RNA sequencing showed overlapping causes. INTERPRETATION: Hyperacute rejection was avoided. We identified potential mediators of the observed endothelial injury. First, widespread endothelial injury indicates antibody-mediated rejection. Second, IVIG bound strongly to donor endothelium, possibly causing immune activation. Finally, reactivation and replication of latent PCMV/PRV in the xenograft possibly initiated a damaging inflammatory response. The findings point to specific measures to improve xenotransplant outcomes in the future. FUNDING: The University of Maryland School of Medicine, and the University of Maryland Medical Center.


Assuntos
Ensaios de Uso Compassivo , Leucócitos Mononucleares , Humanos , Masculino , Transplante Heterólogo , Imunoglobulinas Intravenosas , Coração , Rejeição de Enxerto/prevenção & controle
3.
Nat Med ; 29(8): 1989-1997, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37488288

RESUMO

Genetically modified xenografts are one of the most promising solutions to the discrepancy between the numbers of available human organs for transplantation and potential recipients. To date, a porcine heart has been implanted into only one human recipient. Here, using 10-gene-edited pigs, we transplanted porcine hearts into two brain-dead human recipients and monitored xenograft function, hemodynamics and systemic responses over the course of 66 hours. Although both xenografts demonstrated excellent cardiac function immediately after transplantation and continued to function for the duration of the study, cardiac function declined postoperatively in one case, attributed to a size mismatch between the donor pig and the recipient. For both hearts, we confirmed transgene expression and found no evidence of cellular or antibody-mediated rejection, as assessed using histology, flow cytometry and a cytotoxic crossmatch assay. Moreover, we found no evidence of zoonotic transmission from the donor pigs to the human recipients. While substantial additional work will be needed to advance this technology to human trials, these results indicate that pig-to-human heart xenotransplantation can be performed successfully without hyperacute rejection or zoonosis.


Assuntos
Anticorpos , Rejeição de Enxerto , Animais , Humanos , Suínos , Transplante Heterólogo/métodos , Xenoenxertos , Coração , Animais Geneticamente Modificados
4.
Xenotransplantation ; 29(3): e12744, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35357044

RESUMO

We report orthotopic (life-supporting) survival of genetically engineered porcine cardiac xenografts (with six gene modifications) for almost 9 months in baboon recipients. This work builds on our previously reported heterotopic cardiac xenograft (three gene modifications) survival up to 945 days with an anti-CD40 monoclonal antibody-based immunosuppression. In this current study, life-supporting xenografts containing multiple human complement regulatory, thromboregulatory, and anti-inflammatory proteins, in addition to growth hormone receptor knockout (KO) and carbohydrate antigen KOs, were transplanted in the baboons. Selective "multi-gene" xenografts demonstrate survival greater than 8 months without the requirement of adjunctive medications and without evidence of abnormal xenograft thickness or rejection. These data demonstrate that selective "multi-gene" modifications improve cardiac xenograft survival significantly and may be foundational for paving the way to bridge transplantation in humans.


Assuntos
Rejeição de Enxerto , Transplante de Coração , Animais , Animais Geneticamente Modificados , Sobrevivência de Enxerto , Xenoenxertos , Humanos , Imunossupressores , Papio , Suínos , Transplante Heterólogo
5.
Xenotransplantation ; 29(2): e12725, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35234315

RESUMO

BACKGROUND: Loss of barrier function when GalTKO.hCD46 porcine lungs are perfused with human blood is associated with coagulation pathway dysregulation, innate immune system activation, and rapid sequestration of human formed blood elements. Here, we evaluate whether genetic expression of human tissue factor pathway inhibitor (hTFPI) and human CD47 (hCD47), alone or with combined selectin and integrin adhesion pathway inhibitors, delays GalTKO.hCD46 porcine lung injury or modulates neutrophil and platelet sequestration. METHODS: In a well-established paired ex vivo lung perfusion model, GalTKO.hCD46.hTFPI.hCD47 transgenic porcine lungs (hTFPI.hCD47, n = 7) were compared to GalTKO.hCD46 lungs (reference, n = 5). All lung donor pigs were treated with a thromboxane synthase inhibitor, anti-histamine, and anti-GPIb integrin-blocking Fab, and were pre-treated with Desmopressin. In both genotypes, one lung of each pair was additionally treated with PSGL-1 and GMI-1271 (P- and E-selectin) and IB4 (CD11b/18 integrin) adhesion inhibitors (n = 6 hTFPI.hCD47, n = 3 reference). RESULTS: All except for two reference lungs did not fail within 480 min when experiments were electively terminated. Selectin and integrin adhesion inhibitors moderately attenuated initial pulmonary vascular resistance (PVR) elevation in hTFPI.hCD47 lungs. Neutrophil sequestration was significantly delayed during the early time points following reperfusion and terminal platelet activation was attenuated in association with lungs expressing hTFPI.hCD47, but additional adhesion pathway inhibitors did not show further effects with either lung genotype. CONCLUSION: Expression of hTFPI.hCD47 on porcine lung may be useful as part of an integrated strategy to prevent neutrophil adhesion and platelet activation that are associated with xenograft injury. Additionally, targeting canonical selectin and integrin adhesion pathways reduced PVR elevation associated with hTFPI.hCD47 expression, but did not significantly attenuate neutrophil or platelet sequestration. We conclude that other adhesive mechanisms mediate the residual sequestration of human formed blood elements to pig endothelium that occurs even in the context of the multiple genetic modifications and drug treatments tested here.


Assuntos
Antígeno CD47 , Trombocitopenia , Animais , Antígeno CD47/genética , Antígeno CD47/metabolismo , Sobrevivência de Enxerto , Humanos , Integrinas/metabolismo , Lipoproteínas , Pulmão/metabolismo , Perfusão , Selectinas/metabolismo , Suínos , Transplante Heterólogo
6.
Xenotransplantation ; 29(2): e12731, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35166407

RESUMO

INTRODUCTION: Platelet sequestration, inflammation, and inappropriate coagulation cascade activation are prominent in liver xenotransplant models and are associated with poor outcomes. Here, we evaluate a cassette of six additional genetic modifications to reduce anti-pig antibody binding (α-1,3-galactosyl transferase knockout [GalTKO]) and target coagulation dysregulation (human endothelial protein C receptor [hEPRC] and thrombomodulin [hTBM]), complement pathway regulation (human membrane cofactor protein, hCD46), inflammation heme oxygenase 1 [hHO-1]), and a self-recognition receptor (integrin-associated protein [hCD47]), as well as donor pharmacologic treatments designed to blunt these phenomena. METHODS: Livers from GaltKO.hCD46 pigs ("2-gene," n = 3) and GalTKO.hCD46 pigs also transgenic for hEPRC, hTBM, hCD47, and hHO-1 ("6-gene," n = 4) were perfused ex vivo with whole human blood. Six-gene pigs were additionally pretreated with desmopressin (DDAVP) and clodronate liposomes to deplete vWF and kupffer cells, respectively. RESULTS: The average perfusion times increased from 304 (±148) min in the 2-gene group to 856 (±61) min in the 6-gene group (p = .010). The average heparin administration was decreased from 8837 U/h in the 2-gene to 1354 U/h in the 6-gene group (p = .047). Platelet sequestration tended to be delayed in the 6-gene group (p = .070), while thromboxane B2 (TXB2, a platelet activation marker) levels were lower over the first hour (p = .044) (401 ± 124 vs. 2048 ± 712 at 60 min). Thrombin production as measured by F1+2 levels tended to be lower in the 6-gene group (p = .058). CONCLUSIONS: The combination of the hEPCR.hTBM.hCD47.hHO-1 cassette along with donor pig DDAVP and clodronate liposome pretreatment was associated with prolonged function of xenoperfused livers, reduced coagulation pathway perturbations, and decreased TXB2 elaboration, and reflects significant progress to modulate liver xenograft injury in a pig to human model.


Assuntos
Desamino Arginina Vasopressina , Trombocitopenia , Animais , Animais Geneticamente Modificados , Ácido Clodrônico/farmacologia , Sobrevivência de Enxerto , Heme Oxigenase-1/genética , Humanos , Inflamação , Fígado , Perfusão , Suínos , Transplante Heterólogo
7.
J Thorac Cardiovasc Surg ; 164(6): e411-e424, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-33933257

RESUMO

BACKGROUND: Galactose-α-1,3-galactose (alpha-gal) is a carbohydrate that is ubiquitously expressed in all mammals except for primates and humans. Patients can become sensitized to this antigen and develop alpha-gal syndrome (AGS), or a red meat allergy. Symptoms range from generalized gastroenteritis and malaise to anaphylaxis, and in endemic areas, the prevalence can be as high as 20%. Although AGS patients commonly avoid alpha-gal by avoiding meat, patients have also developed symptoms due to animal-derived medical products and devices. With the rise in transcatheter aortic valve replacement, we investigate the immunogenicity of common cardiac materials and valves. OBJECTIVE: To assess the in vitro immunoglobulin E response toward common medical products, including cardiac patch materials and bioprosthetic valves in patients with AGS. METHODS: Immunoblot and immunohistochemistry techniques were applied to assess immunoglobulin E reactivity to various mammalian derived tissues and medical products for patients with AGS. RESULTS: AGS serum showed strong reactivity to all of the commercially available, nonhuman products tested, including various decellularized cardiac patch materials and bioprosthetic aortic valves. AGS serum did not react to tissues prepared using alpha-gal knockout pigs. CONCLUSIONS: Despite commercial decellularization processes, alpha-gal continues to be present in animal-derived medical products, including bioprosthetic valves. Serum from patients with AGS demonstrates a strong affinity for these products in vitro. This may have serious potential implications for sensitized patients undergoing cardiac surgery, including early valve failure and accelerated coronary artery disease.


Assuntos
Anafilaxia , Hipersensibilidade Alimentar , Humanos , Suínos , Animais , Galactose , Imunoglobulina E , Anafilaxia/diagnóstico , Síndrome , Mamíferos
8.
Xenotransplantation ; 28(6): e12712, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34657336

RESUMO

The transplantation of organs across species offers the potential to solve the shortage of human organs. While activation of human platelets by human von Willebrand factor (vWF) requires vWF activation by shear stress, contact between human platelets and porcine vWF (pvWF) leads to spontaneous platelet adhesion and activation. This non-physiologic interaction may contribute to the thrombocytopenia and coagulation pathway dysregulation often associated with xenotransplantation of pig organs in nonhuman primates. Pigs genetically modified to decrease antibody and complement-dependent rejection (GTKO.hCD46) were engineered to express humanized pvWF (h*pvWF) by replacing a pvWF gene region that encodes the glycoprotein Ib-binding site with human cDNA orthologs. This modification corrected for non-physiologic human platelet aggregation on exposure to pig plasma, while preserving in vitro platelet activation by collagen. Organs from pigs with h*pvWF demonstrated reduced platelet sequestration during lung (p ≤ .01) and liver (p ≤ .038 within 4 h) perfusion ex vivo with human blood and after pig-to-baboon lung transplantation (p ≤ .007). Residual platelet sequestration and activation were not prevented by the blockade of canonical platelet adhesion pathways. The h*pvWF modification prevents physiologically inappropriate activation of human or baboon platelets by porcine vWF, addressing one cause of the thrombocytopenia and platelet activation observed with xenotransplantation.


Assuntos
Trombocitopenia , Fator de von Willebrand , Animais , Plaquetas , Agregação Plaquetária , Complexo Glicoproteico GPIb-IX de Plaquetas , Suínos , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...